
Mr. Drawer: Robot Arm That
Draws

Trudy Ani-Asamani, Alan Azargushasb, Alonso
Ninalaya, Chedlyne Valmyr

Dept. of Electrical Engineering and Computer
Science, University of Central Florida, Orlando,
Florida, 32816-2450

Abstract –The purpose of this project is to build a robot
arm that can paint and draw by recreating images uploaded to
it. The robot with the help of a tool such as marker or paint
brush would draw and paint desired images. The robot arm
through programmed and calculated movements would
execute the job of painting and recreating images with motors.
The design of the robot allows it to perform strenuous tasks
such as rotation and moving horizontally and vertically. It
would be able to compare input and output in order to analyze
how well the task is being performed. It also has color
recognition capabilities.
Index Terms – Microcontrollers, Servo motors, Camera module,
Printed Circuit Board (PCB).

Introduction
The objective of the project is to build a robot arm capable

of drawing. The raspberry camera takes pictures of the
desired input. With the use of servo motors and a marker,
the drawing task is completed. This project was a good
demonstration of what was learnt at the University. As of
right now every member of our group contributed to the
project. However, the synthesis of said elements has not
occurred. Alan Azargushasb was in charge of building the
robot frame and the general testing, and programming of the
robot Arm. Alonso was in charge of Robot Vision. Chey
was in charge of the communication between the chip from
the PCB and the raspberry pi. Trudy was in charge of
powering the entire robot arm.

In this document, the different sections that integrated into
the final prototype are discussed in much detail. The eyes or
input of the robot arm is the raspberry pi camera module.
The servo motors are responsible for the movement of the
robot arm.The raspberry pi and the ATMEGA2560 serve as
the control hub for the raspberry camera and the servo
motors respectively. With computer vision, our camera
module will be capable of shape and color detection.
Additionally, information on inverse kinematics provided
context in the programming of the position and direction of
the servo motors.

Overview

The robot arm with the use of a marker is able to reproduce
shapes and 2-D images. With images uploaded through the
camera module, color and shape recognition features of the
software allows the raspberry pi to analyze the provided
input. Calculations using inverse kinematics allows the
servo motors to be programmable in order to achieve the
wanted output. Computer vision enables recognition of
shapes and colors on the inputted image. The power supply
of the robot arm is paramount to having a fully functional
robot arm. The PCB which was later implemented using the
breadboard enabled the electrical connections of the
microcontrollers and other components necessary for the
project. The paint brush attachment allows a paint brush or
marker to be attached to the robot arm.

Arduino 2560
During this project we used the Arduino 2560 to control the
servo motors. In retrospect this was overkill as we could
have just gone with the regular Arduino uno. Both the
Arduino uno and the Arduino 2560 have 6 pulse width
modulation pins. The only difference is that the 2560 has a
better processor and 20 digital pins. When I started this
project I thought I might use the digital pins. I never did.
The Arduino 2560 served us well throughout this project. I
created a state machine of my code as seen below.

Figure 1. State machine of our code running on the Arduino
2560

Raspberry Pi

https://webcourses.ucf.edu/groups/489505/users/3979930
https://webcourses.ucf.edu/groups/489505/users/3963857
https://webcourses.ucf.edu/groups/489505/users/3963857
https://webcourses.ucf.edu/groups/489505/users/4145502
https://webcourses.ucf.edu/groups/489505/users/4145502
https://webcourses.ucf.edu/groups/489505/users/4145502
https://webcourses.ucf.edu/groups/489505/users/3970648
https://webcourses.ucf.edu/groups/489505/users/3970648

A variety of single board computers exist on the market
today. The Raspberry Pi is a low cost, credit-card sized
computer that plugs into a computer monitor or TV. It is a
capable little device that enables people of all ages to
explore computing and learn how to program in languages
Scratch and Python. It is capable of doing everything you
would expect a desktop computer to dbeen used in a wide
array of digital maker projects, from machined and pareno.
It has the ability to interact with the outside world, and has t
detectors to weather stations and tweeting bird houses with
infra-red cameras. For this design the group needs a board
powerful enough to run our code and send the output via a
transmitter. It will be in charge of taking input from the
camera and send the output to our atmega microcontroller.
Moreover, we need to choose a language that is
understandable and much less complicated overall. Python
programming is the language that the group desired to code
in for the raspberry Pi. After doing an extensive research of
the different types of single-boards that are available, we
decided to use the Raspberry Pi version 4 with 1 Gb of
RAM. and it is able to process and transmit data
successfully. There are different versions of raspberry pi and
one of the most important aspects was the support of the
community with the operating system for this version. For
the previous versions, there is no much support and help for
any troubleshooting happening.

Raspberry Camera Module
With a huge variety of cameras available for the

Raspberry Pi, it was hard to decide which one could do a
decent job without investing too much money.We used the
raspberry pi camera module which is native from the
raspberry pi environment. The reason we went for this is
mainly for the price, however, the compatibility that we get
from this camera is super important for our development;
especially, for troubleshotting. However, it is important to
mention the limits of this camera. It was hard for us to
detect the right shapes and color at night time. Appropriate
lighting was needed for better results. However, we still
decided to take that tradeoff and pick this camera.

Computer Vision Software
Our single-board will perform the shape and color

detection using our camera. We decided to implement
OpenCV in our algorithm since it was the most reliable and

has been used in many computer vision projects. However,
there are a few requirements before we are able to use this
library freely. It is important to mention that there is a lot of
different operating systems we can download to our
Raspberry Pi. However, Raspbian has been the official
system and reliability is an important factor for our project.
Raspbian is a Linux Distribution and as such, we need to
update and set up our environments in order for us to use all
the functionalities from OpenCV, which requires running
around ten commands to make it work without any future
error. This step is the most important phase of the beginning
since it saves our team a lot of time when using OpenCV.
After this step is done, installing python3 and PiCamera is
very intuitive and easy.

Our algorithm with computer vision required studying
subjects such as thresholding, contours, data types such as
numpy arrays and, of course, color properties which are
going to be explained in this section. Computer vision has
many subsections and many ways to solve problems with
object detection; however, this is the way I, Alonso
Ninalaya, thought makes the most sense. After we took a
picture with any camera, we received the number of pixels
stored in a numpy array (structure used by OpenCV by
default). Right after, we need to check what color we get
from the image. For this matter, it is important to keep in
mind how RGB (red, green and blue) works and design a
histogram. Every picture taken comes with set values for
their channels. Each channel represents one of the basic
colors mentioned before. Our histogram from below is a
graphical representation showing how frequently various
color values occur in the image. We use 256 since we want
to see the pixel count for each of the 256 possible values in
the grayscale. Then we pass 0 and 1, which is the value
range of our input image after transforming it to grayscale.

Figure 2.
Histogram of one of our pictures taken from our camera
After finding the range values of our picture, we proceed to
apply the threshold to our image so that it is easier for us to
find objects later on. The process of threshold works like
this. What is thresholding? It is a type of image
segmentation, where we can change the pixels of an image
to make the image easier to analyze. It is related to finding
areas of interest of an image. While ignoring the parts we
are not concerned with. Because we are using OpenCV, we
have access to different functions that allow us to apply the
thresholding to our current image. It is important that our
image being used needs to be on grayscale since our
thresholding transforms our image into a binary image (one
that is simply black and whtie).

Figure 3: Binary Image after applying thresholding
Continuously, we need to find the contours. What are
contours? They can be explained simply as a curve joining
all the continuous points, having the same color or intensity.
Contours are useful for a tool for shape analysis and object
detection and recognition. In OpenCV, finding contours is
like finding white object from black background. For our
project, this was perfect since our surface is a whiteboard.

Contours is represented as a Python list of all the contours in
the image. Each individual contour is a numpy array of (x,y)
coordinates of boundary points of the object. Contours help
us identify shapes present in an image. They are defined as
lines joining all the points along a boundary of an image that
are having the same intensity.

Figure 4: Contours
found in our
whiteboard
Once we found our
desired contours,
we proceeded to
simply get the list
of contours found.
As mentioned
before, the contours
are represented as a

lit of (x,y). Hence, the final step is to get all the pixels and
send them over to our atmega microcontroller.

Power Supply
The power supply provides power throughout the entire

project. We had two power supply options.The first one is
rated at 9 volts and 1 amp. The second power supply is rated
at 5 volts and 15 amps. The second power supply was
however too powerful for the system and fried the wires as
seen in the figure. We went back to the first power supply.
With the voltage regulator we get about 5 volts with 700
mA which gives us 3.5 watts of power.

Figures 5 :Wires Fried by Power Supply

Printed Circuit Board

 The PCB is an important part of the project because it
allows the connection of multiple devices in one. The PCB
controls the communication and the movements of the robot
arm. The PCB allows a transition in this project that allows
everything to come together and work as one.

Figures 6:PCB schematic
The image above shows the connections in the circuit using
the Atmega microcontroller, the Raspberry Pi GPIO pins,
the USB port for serial communication, and the DC jack as
well as the voltage regulator. These components would
allow the PCB to come together. I have included an image
below that shows the board layout view of the circuit board
we were to use for our robot arm. This PCB allowed all of
our parts to be in one place. our original idea for the robot
arm allowed for the Atmega and the Raspberry Pi pins to
communicate, sending xyz coordinates from the Pi to the
Atmega, doing this will allow the servos to draw an images
based off of the coordinates they received from the Pi.

Figures 7 :PCB Board

There were a couple of issues that arrived when we made
an attempt to order the PCB for our project. We did face a

couple challenges when trying to order our PCB, In the

beginning of May our original PCB failed due to the changes

we had to make on our robot arm in the beginning of the

semester. Upon designing a new PCB I attempted to order

one from the company called PCBCart after waiting about 3

weeks for the order to arrive it was cancelled by the

company, after making an attempt to get it quickly mailed

to the United states it was cancelled again because it was

being delivered from another country. IN THE beginning of

the semester Professor Richie said as a backup we can use

the breadboard as an alternative, I was able to order a

couple of our parts for the pcb but some parts were too big

to fit the breadboard as well a little dangerous to connect

with jumper wires while inside of our homes. We don't

have the equipment required to extinguish fires quickly. As

an alternative I have included an image of our alternative

PCB which is shown on figure 8.

Figure 8 shows the connection with the robot arms

servos, voltage regulator, power jack that is powering up

the robot arm, and the Arduino board which will be

programmed to instruct the robot arm to perform certain

movements.

Figures 8:Breadboard

Robot Arm
In the beginning our original plan was to build a robot arm

that could cook pancakes. We originally thought of the design
of the robot arm to be an actual robot arm with a literal robot
hand with 4 fingers and a thumb that would pick up various
utensils such as spatulas, pan handles, etc. The robot arm
would interact with said utensils and a griddle to cook
pancakes. That design we learned was superfluous since the
added complexity of the fingers and thumbs did not add any
functionality and was thus redundant. So we decided to
instead use a gripper design as the end effector on the robot
arm. Since we were not mechanical engineers we decided to
go and look on Amazon and purchased for ourselves a do it

yourself 6 degree of freedom robot arm with a mechanical
gripper as the end effector. Later on when the robot arm was
built we realized the robot arm would not be strong enough to
lift pans or spatulas or utensils. The servos utilized in the robot
arm were not powerful enough to do such things and the robot
arms slots for the servos were such that new servos would not
fit, so we had to use the servos given or start over from
scratch. The reason why our servos were not strong enough to
do the required tasks of lifting and manipulating cooking
utensils is that torque rapidly depreciates the further you get
away from the center of gravity. The cost of a robot that would
be strong enough to do so was out of our budget. So we
decided to change the focus of the project from cooking to
painting. We knew that while the Robot Arm was not strong
enough to move cooking utensils it could move around
painting/drawing utensils. Those things were within the power
budget that the servos provided. So we got to work creating a
robot that paints/draws. We purchased paintbrushes, and
markers, and a whiteboard. The idea was that we would test
the drawing capabilities of the robot arm first and then after
we had that under wraps we would transition to painting. We
never got around to painting, but we did get it to draw.

Inverse Kinematics

Solving the Inverse Kinematics of the robot arm turned
out to be a huge hassle. I, Alan Azargushasb, was trained to
be an electrical engineer, and all the math related to this was
not in electrical engineering but mechanical engineering. In
retrospect I would say the vast majority of my work was not
in electrical engineering but either mechanical engineering
or computer engineering. The only electrical engineering I
did was assembling certain wires into the breadboard and
Arduino. None of my electrical engineering skills were ever
really used in my senior design project. Because of this it
took me a while to figure out the equations necessary to
program into the Arduino to control the robot arm. I was
approaching this completely in the dark. I was lucky to find
a robotics course on youtube taught by Angela Sodamann, a
mechanical engineer, to help me figure out the math behind
it all. Three dimensional robots are generally designated into
5 different types: carestian manipulators, cylindrical
manipulator, spherical manipulator, scara manipulator, and
articulate manipulator. These manipulators are made out of
2 primary components, a revolving joint, and a prismatic
joint. Revolving joints rotate around a central axis and are
represented as cylinders in a robotics free body diagram. A

prismatic joint moves forward and backward and are
represented as squares in a robotic free body diagram. Our
Robot arm is made up only of revolving joints and is called
an articulated manipulator. I bring this up because for the
task at hand, drawing and painting, this is the worst robot
you can use for such a task. It is also the most complicated.
The math for this kind of robot is much more complicated
than the other kinds of manipulators. For the task at hand
the simplest and best robot we could use would be a
cartesian manipulator, consisting only of prismatic joints.
When I bought the robot arm I did not know any of this. I
had taken a course in robotics, but it was the introductory
course, and did not discuss free body diagrams and solving
for the said equations. Luckily I took physics 1-3, as well as
Statics and Dynamics at UCF so I was familiar with free
body diagrams. If we had used a cartesian manipulator the
math would have been very easy. Since cartesian
manipulators only consist of prismatic joints I would have a
prismatic joint for each axis in a three dimensional space,
X-Y-Z. Using a microcontroller I would tell the prismatic
joints to expand or contract with respect to their assigned
axis. The X-Y coordinates would correlate one to one with
the X-axis prismatic joint and the Y-axis prismatic joint and
to draw or paint I would expand or contract the Z-axis
prismatic joint. My X-Y coordinates would correspond to
the X-Y position on the canvas and the paper plus or minus
a slight offset. I have zero unknowns. I don't have to solve
for any variables. The offsets would come via
experimentation and or measurement by hand. The math is
simple and it works. The coordinates are my kinematics.
With an articulated manipulator it is the exact opposite, I
have three revolving joints. Now, the original robot arm had
six degrees of freedom. Five of those joints had to do with
motion, the last degree of freedom was the servo attached to
making the robotic claw and was in charge of opening and
closing the claw. Since we were not using the claw but
instead our own 3d printed part we got rid of it and the
corresponding servo. I got rid of the other two joints and
their corresponding servos to reduce the weight as well as
the computational complexity of the project. With just 3
joints we have 10 unknowns! All we know is the
coordinates of the points we want to reach in 3d space.
From those 3 points, in the free body diagram we call them
X3, Y3, and Z3 since they are attached to the third joint and
are connected to the third servo. We start with two free body
diagrams detailing our joints and the relationship they play

with the X-Y-Z coordinates. Let us start off with our
constants, our constants are a1, a3, and a3. A1 is the length
of base, until the end of servo the center of rotation at servo
2. At least that is how it is supposed to be, we will come
back to this point later on. A1 in our measurements was one
hundred and thirteen millimeters. A1 rotates around the X
and Y planes, from zero to 180 degrees. When the servo,
servo 1 is set to angle Zero. The robot is completely in the
positive X direction and moves through the X-Z plane.
When servo 1 is set to ninety degrees, the robot is
completely in the positive Y direction and moves through
the Y-Z planes. A2 is the length of the second joint, from
the axis of rotation servo 2, to the axis of rotation, servo 3.
We find the length of a2 by measurement. With a ruler we
found a2 to be one hundred and four millimeters. Joint a2 is
controlled by servo 2. The end of joint a2 is pivoted upward
in the Z direction when the angle of servo 2 is positive. The
lowest angle servo 2 can reach is 60 degrees due to a
physical constraint on the arm. There is a metal bracket that
impedes the movement of joint a2. At ninety degrees joint
a2 is completely horizontal, at one hundred and eighty
degrees joint a2 is completely vertical. Joint a3 is from the
central axis of rotation to the end of end effector, which is
the tip of either the marker, or brush, or 3d printed
attachment. Without the marker, the length of joint a3, from
axis of rotation to the tip of the 3d printed attachment is one
hundred and twenty two millimeters. With the marker it
comes out to two hundred and twelfth millimeters.
Wherever the tip of a3 is, that is where the coordinate Z3 is
as well.

 Figure 9: First
Free body diagram of Robot Arm, Side view.

As you can see from our first free body diagram. Notice
that there is no X3 or Y3 listed in this free body diagram.
Why is that? It is because our free body diagram must
always be accurate, the position of X3 and Y3 can be
affected by servo 1, or rotation by joint a1. We need a

second free body diagram to derive the position of X3 and
Y3. One that is always accurate no matter what.

Figure 10:First Free body Diagram Top View

From the top view we now get the X3, and Y3
coordinate. Notice that we set the robot arm in between the
X and Y axis. We did this to make sure that this free body
diagram is generic and can represent every possibility as a
result of servo 1. The angle between the X3 coordinates and
the Y3 coordinates is theta 1. From this we create 2 triangles
to solve the math for the inverse kinematics. One of the
triangles is a right triangle, the other is an oblique triangle.

Figure11: Triangle used to solve inverse kinematics of free
body diagrams.
The right triangle gives us three unknowns called R1, R2,
and R3. The position of the robot arm forms the oblique
triangle. They both share the same hypotenuse, R3, and R1
is always the projection of a1 and a2 unto the X-Y plane.
From these two triangles we get many unknown
angles:alpha 1, alpha 2, alpha 3, beta 1, beta 2, beta 3, theta
1, theta 2, theta 3. We systematically solve for each
unknown using trigonometric laws until we know
everything. From the knowledge derived from solving these
large systems of equations we get theta 1, theta 2, theta 3.
These three angles are in radians and will then be converted

to degrees and used as the angles for servo 1, servo 2, servo
3. These free body diagrams show the initial configuration

of our robot arm.
Originally our
whiteboard was
vertical, and the
robot would draw
on the Z-plane ,
however the
whiteboard kept
falling backward.
So we decided to
redesign our robot
arm to instead
draw on the X-Y
plane instead of
the Z-plane.
Figure
12:Original

Configuration
Since the white bourd now lies flat on the table, we do not
have to worry about the white bourd tipping over. However,
now we have to redo the math. The triangle formed in our
first free body diagram is no longer true for how the robot
arm behaves in this new configuration. In the first free body
diagram a3 always pointed upward relative to a2. In our new
configuration a3 will always point downward relative to a2.

Figures 13 and 14 Second Free body diagram and Second
Inverse Kinematic Triangle
As you can see , in this arrangement Z3 is always below A1.

Paint brush attachment
The paint brush attachment is a crucial part of the robot arm
design. This is because the attachment facilitates the
accurate execution of painting the canvas or board. Different
prototypes of the paint brush attachment were investigated
in order to find the best fit for this design. Two main criteria
that were essential for the nature of the paint brush
attachment were: firstly, the chosen prototype must be able

to support our chosen tool (brush or marker). Secondly, the
paint brush attachment must be sturdy and robust to
facilitate the flawless execution of the artwork. Solid works
was the application used to design the paint brush
attachment. The images in the figure capture the final design
for the paint brush attachment.

Figure 15 & 16: Final design ready for printing with cost
included

Acknowledgement
The authors wish to acknowledge Dr.Riche and Dr. Lei Wei
for their counsel throughout Senior Design 1 and 2. The
authors would like to thank Professor Ronald F. DeMara,
Professor Zakhia Abichar and Professor Chinwendu
Enyioha for agreeing to sit on our project review board. We
would also like to thank ourselves for the hardwork and
dedication that went into our project.

Biography

Alonso Ninalaya is a senior
studying Computer Engineering
at the University of Central
Florida. He will graduate on
August 1st. His current and
previous software experience

includes working with front-end frameworks and hosting
applications in the cloud, from an internship helped him
with the understanding of this new industry called computer
vision. He plans to begin a career in the industry.

Alan Azargushasb
is a senior studying
Electrical
Engineering at the
University of
Central Florida.
Alan will graduate
aug 1. He plans on
getting a job in the
Electrical

Engineering industry.

Trudy Ani-Asamani is a
senior studying Electrical
Engineering at the
University of Central
Florida. She graduates on
August 1st 2020 and hopes
to inspire change in the
technology industry of
Africa.

Chedlyne Valmyr is a
senior studying Computer
Engineering at the
University of Central
Florida. With her previous
work experience as a
Software Engineer at a
startup company. She
hopes to obtain a position
as a Front-end software
engineer after graduating.

REFERENCES:

[1]https://www.quora.com/How-can-I-detect-an-object-from
-static-image-and-crop-it-from-the-image-using-openCV

[2]https://docs.opencv.org/trunk/d4/d73/tutorial_py_contour
s_begin.html

[3]https://docs.opencv.org/master/d7/d4d/tutorial_py_thresh
olding.html

[4]https://datacarpentry.org/image-processing/05-creating-hi
stograms/

[5]https://www.raspberrypi.org/forums/viewtopic.php?t=69
86

[6]https://www.raspberrypi.org/help/what-%20is-a-raspberr
y-pi/#:~:text=The%20Raspberry%20Pi%20is%20a,languag
es%20like%20Scratch%20and%20Python.

[7]https://stackoverflow.com/questions/52179821/python-3-
i-am-trying-to-find-find-all-green-pixels-in-an-image-by-tra
versing-al

[8]https://youtu.be/D93iQVoSScQ

https://www.quora.com/How-can-I-detect-an-object-from-static-image-and-crop-it-from-the-image-using-openCV
https://www.quora.com/How-can-I-detect-an-object-from-static-image-and-crop-it-from-the-image-using-openCV
https://docs.opencv.org/trunk/d4/d73/tutorial_py_contours_begin.html
https://docs.opencv.org/trunk/d4/d73/tutorial_py_contours_begin.html
https://docs.opencv.org/master/d7/d4d/tutorial_py_thresholding.html
https://docs.opencv.org/master/d7/d4d/tutorial_py_thresholding.html
https://datacarpentry.org/image-processing/05-creating-histograms/
https://datacarpentry.org/image-processing/05-creating-histograms/
https://www.raspberrypi.org/forums/viewtopic.php?t=6986
https://www.raspberrypi.org/forums/viewtopic.php?t=6986
https://www.raspberrypi.org/help/what-%20is-a-raspberry-pi/#:~:text=The%20Raspberry%20Pi%20is%20a,languages%20like%20Scratch%20and%20Python.
https://www.raspberrypi.org/help/what-%20is-a-raspberry-pi/#:~:text=The%20Raspberry%20Pi%20is%20a,languages%20like%20Scratch%20and%20Python.
https://www.raspberrypi.org/help/what-%20is-a-raspberry-pi/#:~:text=The%20Raspberry%20Pi%20is%20a,languages%20like%20Scratch%20and%20Python.
https://stackoverflow.com/questions/52179821/python-3-i-am-trying-to-find-find-all-green-pixels-in-an-image-by-traversing-al
https://stackoverflow.com/questions/52179821/python-3-i-am-trying-to-find-find-all-green-pixels-in-an-image-by-traversing-al
https://stackoverflow.com/questions/52179821/python-3-i-am-trying-to-find-find-all-green-pixels-in-an-image-by-traversing-al
https://youtu.be/D93iQVoSScQ

